

Herd Improvement Heroes - Paynes Farm

Pages 4-6

3 Welcome -Geoff Corbett, GM NZ Markets

4-6 Herd Improvement Heroes – Paynes Farm

Brad and Claire Payne have created a legacy of genetic excellence on their Waikato farm.

After inheriting a love of farming from his father Rex, Brad has focused on using selective breeding to accelerate his herd's genetic gain while also sharing this success with the wider industry.

© 2025 Livestock Improvement Corporation Limited ("LIC"). LIC is the owner of all Intellectual Property Rights connected with the brand names MINDA", MINDA Land and Feed", Premier Sires", Alpha", SGL Dairy", KiwiCross", GeneMark", Hoofprint", BSI", Beefprint", DataMate", Bulls-i", EzLink", EzLink EID", Customate", and the products SGL, Forward Pack, AB Technician, Sire Proving Scheme, Herd Testing, LIC Heat Patch, Heat Patch Plus, 6 Week Challenge and the associated visual identity and trade dress. Intellectual property in the brand names Beacon" and the associated visual identity and trade dress are owned by Beacon Automation Pty Limited. All rights reserved.

Celebrating 40 years of MINDA®

Page 24-25

7-8 Why changing data builds stronger herds

Frequent updates to data, can seem confusing, LIC Chief Scientist, Richard Spelman looks at the reasons behind this, and explains why the most up to date data is important to allow you to make timely decisions around breeding accuracy and herd productivity.

9 Driving improvement through teamwork

October's animal evaluations bring updates to LIC's Premier Sires teams. Ten new graduate bulls are added, while proven performers remain in the mix. Discover how these teams are chosen and the value they provide to you.

10-11 KiwiCross® - Genetic progress comes into focus

KiwiCross is evolving from a hybrid cross into a purpose-bred composite with its own identity and consistency. Early results from the 2022 SPS KiwiCross team show promising daughter performance including efficient milkers with tidy udders and strong fertility.

12-13 Holstein Friesian - Which sires are starting to shine?

Early animal evaluation results are in, sparking plenty of interest as new sires begin to prove themselves. While it's still early days, each herd test and TOP inspection adds valuable insights.

Farming smarter with MINDA integrations

Pages 26-29

14 Jersey – The next generation

Spring breeding decisions drive herd improvement, with promising new Jersey graduates like Generation, Excelsior and Julian showing strong genetics and production traits.

15-23 Animal data

Increase your herd's genetic value with Premier Sires, a cost-effective and convenient way to mate your herd with New Zealand's top bulls.
October 2025 data.

25 Value of animal testing for farmers

Tim Cameron, LIC's new Head of Diagnostics, explains how animal testing empowers farmers to make smarter decisions, boost herd health, breeding outcomes, and profitability, through accurate, actionable insights.

SRG update

This first SRG update introduces new members, and reaffirms the group's commitment to representing LIC shareholders and strengthening farmerowner connections.

27-28 Celebrating 40 years of MINDA°

MINDA turns 40! From paper records to a powerful digital platform, we celebrate MINDA's evolution in herd management and its impact on farmers.

29-32 Farming smarter with MINDA integrations

Jason and Raewyn
Sanford's tech-driven
dairy farm shows how
MINDA integrations
can transform herd
management-boosting
efficiency, genetic gain,
and productivity all while
reigniting their passion
for farming.

33-34 Introducing KiwiPrime

KiwiPrime is a purposebuilt dairy-beef genetics solution offering calving ease, short gestation, and improved growth. Product Manager Paul Charteris shares how it's set to reshape the dairy-beef value chain.

Introduction

Kia ora koutou, welcome to the Spring Bulletin

As the busy calving season draws to a close for many, it's encouraging to see the strength of the sector coming through in the numbers.

atest data from the Dairy
Companies Association shows
milk collections across the
country are up 2.5% year-on-year,
with farmers producing nearly 127
million kilos of milksolids in August
alone. This is a real testament to
the progress being made across
the sector. The gains from genetics,
the value of animal health testing,
and, above all, the commitment
of New Zealand dairy farmers
to improving efficiency and
performance season after season.

The calves being born are getting better with every year which is the result of not only hard work, but also incremental gains that adds up over generations.

Brad Payne and his family are a good example of this. Brad's love of farming and his passion for breeding was sparked by his father at an early age. Through careful selection, embryo transfer work and a deep understanding of cow families, Brad has elevated his herd to a new level. You can read more about Paynes farm on the next page.

The focus on what it means to be a generational co-operative

and improve herd productivity for everyone, faster and together is at the very heart of what we do. At our AGM last month, Board Chair Corrigan Sowman spoke about LIC's strategy refocus and our commitment to aligning our resources and energy to the things that truly matter for our farmers, this includes a commitment to making LIC easier to deal with through improved customer service and on farm software.

We're applying this across everything we do. From our new initiative with kiwi-owned organisation Sharesies, which makes managing your shares easier, to providing a more personalised experience with the communications you receive from us, so you only hear about what matters most to you. The core of what we do and our commitment to delivering value on farm remains the same, how we deliver it, is where we're focusing.

With milk production at its busiest and spring mating underway, our teams are looking forward to supporting you on farm with AB, herd testing, and animal health

Geoff Corbett, LIC General Manager NZ Markets

solutions to keep your cows happy, healthy and productive.

I hope you enjoy reading this issue of The Bulletin and I wish you all the best for the remainder of the season.

Ngaa mihi Geoff Corbett

L to R Austin and Achie Payne

Paynes Farm

A generational legacy of genetic excellence

The Payne family's dairying legacy began in Huntly in 1972, when Rex Payne purchased a neighbour's herd of cows. From their humble start, the Paynes have been focusing on increasing their herd's potential, a passion that would span the generations.

ast-forward to 2003, the family relocated their operation to the heart of Cambridge, Waikato, purchasing the block that the farm operates on today. Over the past two decades, the transformation of the Payne's herd has been nothing short of remarkable.

The family's farm has continued to evolve under Rex's son Brad Payne, who inherited both the herd and his father's enthusiasm for breeding. Brad is committed to genetic improvement within his herd. Through careful selection, embryo transfer work and a deep understanding of cow families, he has elevated the herd to a new level. It's a true testament to the work of him and his father: building better cows, season after season.

Today, the Payne farm runs close to 800 cows, expanding steadily each year. The farm operates mostly as a system 3, with supplementary feeding to ensure the cows perform to their genetic potential year-round.

The farm is very much a family affair. Brad and his wife Claire manage the day-to-day, and father Rex steps in during peak times, particularly calving. They're supported by one part-time staff member, and together they manage their unique farm demands.

During calving, the Payne family rear more than 500 calves, a massive undertaking that reflects the commitment to their breeding operation. Calving runs from May 1st through to the end of September, which is different to traditional spring calving, but their decision is tactical. They aim to calve around 150 cows per month, or roughly five cows a day.

Brad says the decision to calve 150 cows per month isn't just about pacing, it's about practicality.

"If we had a normal spring calving and had to rear 550 calves all at once it'd be a massive workload. The feeders just wouldn't cope, and teaching calves to feed would be chaos."

To manage this volume, the farm uses automated calf feeders, which have become an essential part of the system. Each unit can feed up

to 150 calves, and with three units on site, including a new high-capacity feeder that can handle 250 calves at a push.

"Teaching five calves a day is manageable. Teaching 40 in one go? That's a whole different story. Everything we do here is tailored to what works for us." Brad's real passion lies in his breeding programme. He invests heavily in embryo transfer (ET) work to give him more opportunities to breed more replacements from his top cows each season.

A bonus of the Payne farm's early calving schedule is the opportunity to rear and observe daughters from LIC's SPS bulls ahead of other SPS farmers. "It's really neat to have that slight head start," Brad says. "We get to see which of those bulls produce what daughters before most others do, helping bulls get there proofs as early as possible."

Brad is also a trained AB technician, which means he not only inseminates all his own cows but also runs a local mini-AB round. His passion for breeding spills over into every phase of the reproduction cycle, from getting cows in calf to rearing the resulting calves. "I draft the cows and immediately I can

inseminate them, just another way to be as efficient as possible in our layered system."

The ET programme is the heart of Brad's strategy. Each year, he carefully selects the top 60 dams based on their genomics, production records, and overall health. Using ET, he implants embryos into surrogate cows to increase the number of calves born from his elite dams. This technique allows him to produce multiple offspring from his very best cows each year, accelerating genetic progress compared to traditional breeding.

The results speak for themselves. With this intensive focus, the compounding ripple effect on his herd is unmistakable, better cows means higher production, and more efficiency. "The real reward is seeing each new group of heifers come into milk better than the last, that's when you know the breeding is working." Brad says, even dad Rex, who's been milking cows for decades, sees the difference. "Dad often says you can clearly see how far the herd has come, the cows we're milking now are just on another level."

Brad's intense interest in breeding has driven him to develop an intricate system. "The ET work started as a bit of a hobby over a decade ago, and now... well, I guess you could say it's out of control to a

L to R Achie, Claire, Brad and Austin Payne

Brad Payne at Paynes farm

degree, but I just really enjoy it."

His understanding of top cow families also gives Brad the ultimate edge. Each year he signs contract matings with LIC, which allows the co-operative to purchase the resulting bull calves. Brad is also a key contributor to LIC's elite heifer ET programme which includes 160 heifers across the three breeding schemes.

Brad has bred Premier Sires across every major dairy breed and is now exploring minority milking breeds with the same hands-on approach. Rather than buying in new genetics to achieve this, he's committed to 'doing it yourself' breeding each new breed from scratch over generations.

One of Brad's most successful cow families traces back to a single, standout dam named Sonia, the matriarch of what's now known as the S family. Although Sonia's life was short, her genetic legacy has been nothing short of transformative. At the time, she held the title of highest BW cow in the country, and her influence continues through her descendants. Sonia is the dam and arand dam of several standout bulls, including Sublime and Stamina both of which have made their mark in breeding programmes across New Zealand.

Brad's passion for breeding and his pursuit of pushing genetic boundaries is creating a legacy that's not only reshaping their own herd but also helping lift the wider industry.

Claire and Brad are grounded when it comes to their future goals. There's no pressure on their boys, Archie and Austin, to take over, but they're proud that both have already shown an interest and like to lend a hand on the farm. Brad often reflects on the moment his father handed over the reins to him. acknowledging how hard that must have been. "When the kids bring me ideas of what they'd like to do with the farm, I'll listen. Dad did that for me, and I'll do that for my boys too." If the boys choose a different path, Brad and Claire will support them wholeheartedly. But for now, they're quietly confident, the Payne Farm legacy will continue.

Farm facts

Farm owners:

Brad and Claire Payne

Name of farm:

Paynes Farm

Herd size: 800 peak

Location:

Cambridge, Waikato

Bulls purchased by LIC:

- · 112 bulls purchased since 2010
- 25 Holstein Friesian,
 79 KiwiCross, 8 Jersey
- · First bull in the premier sires team was in 2011

Understanding data:

Why changing data builds stronger herds

The dairy industry has entered an era where data is not just useful, it is essential. To ensure we can support you to make the best herd improvement decisions, it's important we can supply timely and accurate information to help underpin every breeding decision.

ou may notice that breeding values and evaluations change more frequently today than they once did. These changes can sometimes appear confusing, but in fact, they reflect the strength of New Zealand's evaluation system, a process designed to incorporate the latest information and provide the most robust estimates of genetic merit possible.

At its core, animal evaluation (AE) is the process of estimating an animal's genetic merit. For cows, this is largely based on their own performance data, such as lactation results. For bulls, estimates are drawn from their progeny and ancestry. These evaluations allow both farmers and LIC to identify the animals most suited for breeding, ensuring continuous improvement of both your herd and the national herd.

Evolution of evaluation frequency

In the early 1990s, technological limitations meant that only one or two official AE runs were possible each year. Farmers received a static set of values, updated annually. Today, advances in computational capacity and reduced processing costs allow for approximately a dozen evaluations per year.

This frequency is not about producing more data for data's sake. It reflects the necessity for current information which allows you to make breeding and selection decisions at key times of the season. For example, as herd testing results

become available from September onwards, evaluations ensure that the most promising bulls can be identified quickly and added to the Premier Sires team. Similarly, you can use updated data to make timely decisions on which cows to target with sexed semen or select for replacements.

The genomic step change

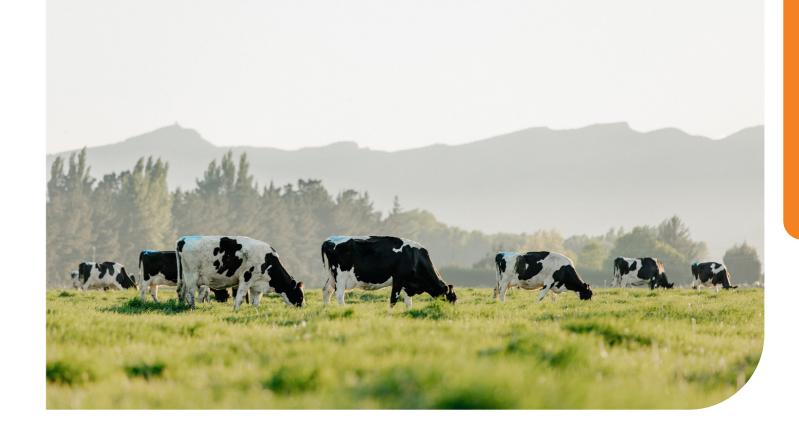
The introduction of genomics in 2008 marked a fundamental shift in animal evaluation. While herd testing and performance data provide valuable insights, a genomic profile offers a static picture of an animal's DNA. However, the interpretation of that profile changes as more animals are genotyped and linked with performance data.

Currently, more than 400,000 animals have been both genotyped and herd tested. This year, that number is expected to double to around 800,000. Each additional data point improves the accuracy of the marker effects used in genomic evaluations. As a result, an individual animal's breeding value may shift even when nothing about its own performance has changed. What is changing is the scientific certainty of the estimate. Animal evaluations are not static truths, but continuously refined estimates based on the best available evidence. More data simply means better predictions.

Incorporating economic values

Another factor influencing animal rankings is the annual recalculation

Richard Spelman Chief Scientist


of economic values. Conducted by DairyNZ and NZAEL each December, this process accounts for variables such as milk price, feed costs, and the relative value of fat and protein.

While the underlying breeding values (for traits such as fat, protein, milk volume, liveweight, and fertility) remain unchanged, the weighting applied to each trait is updated to reflect current economic conditions. This ensures that Breeding Worth (BW) reflects the most relevant market realities. Farmers may notice significant shifts in rankings from year to year, but these shifts are necessary to ensure that the evaluation system remains aligned with industry economics.

Why continuous change is beneficial

While stability can appear better, in genetics, apparent stability can mask lost opportunities. If AE results were released only once per year, you could be basing your breeding decisions on outdated information. This could mean selecting animals that no longer represent the best genetic potential, particularly as new herd test results, progeny data, or genomic information become available.

Frequent updates mitigate this risk. Change in breeding values should be seen as evidence of progress: the system is incorporating new data to provide more accurate guidance.

Rigorous quality assurance

Accuracy is paramount. Each AE run is subjected to multiple layers of quality control before being released into systems such as MINDA. Outputs are checked extensively in the days leading up to release, and staff work through the night to verify that data has uploaded correctly.

When new scientific models are developed, they are typically tested in parallel with existing models for several evaluation runs before being introduced. Only when our scientists are confident in the

robustness of the methodology are changes implemented. In some cases, promising developments have been deliberately delayed until the science reached the required standard. This conservative approach ensures that farmers can have confidence that the change they see reflects genuine improvement in accuracy.

The role of the co-operative

As a co-operative, we carry a unique responsibility. Our farmers are both the owners of the organisation and the primary

contributors of data. That creates a dual obligation: to safeguard the integrity of the information and to ensure that it is shared as transparently and as promptly as possible.

The long-term commitment of our research and development staff, many of whom have dedicated decades to advancing genetic evaluation, reinforces this approach. There is no benefit in implementing changes prematurely. Genetic progress is a long-term endeavour, and data ultimately reveals whether a system works or not.

In brief:

The volume of data in New Zealand's dairy industry will continue to grow. Herd testing, genomic profiling, and economic modelling all contribute to increasingly sophisticated evaluations. This complexity should not be viewed with concern. Rather, it represents an unprecedented opportunity: every new dataset enhances the accuracy of predictions and improves the reliability of breeding decisions.

You can be confident that we will not release new data until it has been thoroughly validated. Once released, it represents the best possible estimate of genetic merit, designed to help you make the most informed decisions for herd improvement.

Frequent changes in evaluation data are not a weakness in the system, but its strength. It helps us ensure that the information guiding you as farmers is transparent, current, and trustworthy. And most importantly, it ensures herd improvement, generation after generation.

Driving improvement through teamwork

October is always an exciting month, with three animal evaluation (AE) runs taking place over four weeks.

ach new round of herd test and TOP data gives us a clearer picture of how the bulls selected in 2021 are proving through their daughter's

These movements are also reflected in our Premier Sires teams. After just two AE runs, we've already made 20 updates to ensure you have access to the best possible bulls available. This includes the addition of six Holstein Friesian and four KiwiCross new graduate bulls to the Premier Sires teams.

performance.

It's always rewarding to see bulls that have featured in our teams over several years continue to perform strongly. Notable examples include Bentons Second Chance and Paynes Gameboy (pg 10-11), both now sitting at 506 gBW after three consecutive seasons in

Dairy Genetics Product Manager

the teams. The same is true for our Jerseys, with Paynes Titus Excelsion and Paynes RB Generation (pg 14) both currently in the lineup at 496 gBW and 473 gBW, respectively. Another standout is Mah Finn Sage (pg 13), holding a solid 485 gBW with impressive type to match.

The movements within the bull teams continue to highlight the importance of using a team of genomic bulls rather than relying on a single individual. This is evident from outlier bulls such as Hazael BM Optimum (pg 12), who has risen to 493 gBW, and Sansons Greenstone (pg 11), now sitting at 407 gBW both who have now been added to teams. As a result, we have twentyfour 22-code graduates currently in our teams.

Our Premier Sires teams are constructed based on minimum criteria rather than a simple

average-based approach. While the team's average gBW reflects what you can expect to see on-farm, every bull must first meet minimum thresholds for key individual traits before being considered for inclusion.

The key traits of interest within our teams are milk solids, fertility, liveweight and udders. By selecting bulls that exceed our minimum thresholds, we ensure you see ongoing improvement in the traits that matter most. For example, within the KiwiCross Forward Pack. the lowest fat kg BV in the team is delivering 28kg more than the 2015 base cow, while the highest is a delivering a massive 68kg.

Given the criteria used to select these teams and the strong genetic merit of the bulls within them, we are confident there's a team to suit everyone's needs.

122056 Mah Finn Sage-ET SIF

322002 Paynes RB Generation-ET

KiwiCross®

Genetic progress comes into focus

For a long time, KiwiCross was mostly talked about for hybrid vigour and the lift that comes from mixing Holstein Friesian and Jersey breeds.

By Kelli Buckley, Bull Acquisition Manager

hat part is still true, but things have moved on. With genomics now well embedded in the way we select young sires, this population is no longer just a by-product of crossing two breeds. The progress we are seeing in KiwiCross is now intentional, and it is shifting towards something more defined. Through deliberate breeding decisions, the aim is now to build a more uniform, purpose-bred and stable composite animal with its own identity, consistency and longterm value.

This spring offers the first real look at that shift in action. The first daughters from the 2022 SPS KiwiCross team are now milking in herds, and the early herd test and TOP results are starting to feed into partial proofs. It is still early days, but the first signals are encouraging. We are seeing daughters that are milking efficiently for their size, presenting tidy udders and settling into calving and cycling patterns in line with what we expected during their genomic marketing era. In a farming environment where efficiency per kilogram of cow and per hectare is now the real measure of progress, this matters. Cows that produce more from less bodyweight ease pressure on land, feed, infrastructure and emissions.

As more daughters come into milk, TOP classification takes on even more importance. The genomics behind type and functional traits can only enhance their reliability as more data feeds in, and that relies on farmers continuing to get daughters inspected.

Here are four KiwiCross sires already showing promising early signals as they enter their first daughter proof stage.

522012 PAYNES GAMEBOY-ET

PAYNES GAMEBOY-ET opens graduation at 506 gBW, and his first daughters are already showing the balance his profile was selected for. With a fat gBV of +48.8 and protein gBV of +23.6, they are milking efficiently without carrying extra liveweight. This is supported by his liveweight gBV of -23.9, which aligns well with feed conversion goals. Gameboy's udder overall gBV of +0.67 and strong fertility gBV of +7.4 are coming through in classification and early calving pattern feedback, pointing toward daughters that will stay in the herd and work well under pressure.

Brad and Claire's herd is renowned for breeding functional cows that last, and Gameboy is following that same pattern. With 25 TOP daughters already inspected, he is shaping up as a sire that will leave moderate-framed, efficient cows that settle quickly into herd routines rather than demanding extra management.

522038 ARKANS COMMANDO-ET

At 411 gBW, ARKANS COMMANDO-ET is presenting as a highly efficient KiwiCross sire with a clear grass-based system fit. His daughters are showing a protein gBV of +27.7, paired with a capacity gBV of +0.54, giving them the width and strength to handle pasture shifts well without extra size. His liveweight gBV of -9 supports that moderate frame target, and his udder overall gBV of +0.66 is being reflected in early classification notes mentioning clean udders and correct teat placement. Commando's fertility gBV of +1.7 makes him a safe and steady option for farmers wanting durable, low-stress daughters that cope well in seasonal calving systems.

522012 Paynes Gameboy-ET

522038 Arkans Commando-FT

522069 BENTONS SECOND-CHANCE

BENTONS SECOND-CHANCE also starts at 506 gBW, and he is beginning to show the strong component performance his genomic profile hinted at. With a fat gBV of +68.4 and protein gBV of +36.3, his daughters are already delivering on production without compromising structure. He does bring a liveweight gBV of +47, so his daughters carry a bit more frame - but this is balanced by a fertility gBV of +3.4 which keeps him in line with herd reproductive expectations. His udder overall gBV of +0.29 suggests a safe, functional type that fits commercial environments.

Being selected into LIC's Forward Pack team early signalled confidence, and his lift through the recent evaluation runs supports that call. He looks well suited to herds chasing output and protein while still wanting reliable udders and temperament in the shed.

522069 Bentons Second-Chance

522030 SANSONS GREENSTONE

Starting graduation at 407 gBW, SANSONS GREENSTONE is already gaining attention for his udder and fertility profile. With an udder overall BV of +0.79 and an outstanding fertility gBV of +8.3, he is positioning himself as a sire that will build long-term herd structure through cows that get in calf easily and stay sound. His fat gBV of +36.7 and protein gBV of +19.9, supported by a liveweight BV of +16.9, make him a balanced and system-friendly bull for commercial and contract herds alike.

The Sanson breeding programme has always valued temperament and consistency, and his 29 TOP daughters inspected so far are tracking true to that. Feedback from SPS herds point towards quiet daughters that milk without fuss and adapt quickly to milking routines.

522030 Sansons Greenstone

Looking ahead

As more herd test data flows through and TOP inspections continue across the country, the reliability of these young sires will lift. What is already evident is that KiwiCross is moving well beyond simple hybrid advantage. It is now a purpose-led breeding programme with structure, identity and momentum. The combination of genomic selection, SPS validation and deliberate KiwiCross-to-KiwiCross breeding decisions is starting to show in the daughters entering sheds this spring. It will be exciting to watch this next chapter take shape.

Holstein-Friesian

Which sires are starting to shine

With two animal evaluation runs completed for graduating sires, early data is already sparking plenty of interest and discussion.

By Michele van der Aa, LIC Bull Acquisition Specialist

s always with these early runs, data is limited, so any big movements – good or bad - should be taken with a grain of salt.

Sometimes sires that shine early in lactation will level out as more daughter production information and herd test results come in. While others are the long-distance types – slower to start but strong finishers once they hit their stride

This variation is exactly why completing adequate herd tests to capture the full lactation curve of the season is so valuable. Each test adds another piece to the puzzle, improving the reliability of the data and the accuracy of the breeding decisions you make for your herd.

It's a similar story for Traits Other than Production (TOP) information. Inspectors are still in the early stages of the Sire Proving Scheme tours, where official classification captures the physical assessments of daughters. At present, the 22-code graduates have an average of just 27 daughters inspected each, but we would expect this number to rise to approximately 80 daughters per sire by the end of the season.

So, while these early results certainly make for interesting reading, the real story is still unfolding. That said, it's always exciting to see some early movers coming through.

Below are a few sires already showing real promise, giving us a glimpse of what might lie ahead as the season unfolds.

122085 HAZAEL BE OPTIMUM-ET S2F

Bursting onto the scene as the number one Friesian bull on the Ranking of Active Sires (RAS) list is HAZAEL BE OPTIMUM-ET S2F. An impressive production powerhouse, Optimum boasts 73 kgs of fat and 44 kgs of protein and it would appear this strength is already being reflected in his daughters. Optimum leapt an enormous 262 gBW across the last two evaluations with 117 daughters herd tested to date.

Optimum's dam, a daughter of DICKSONS MH MASON-ET S2F also shines with her own remarkable production figures with a PW (production worth) exceeding 700. Bred by Hans Schouten of Southland, who has since retired from dairy farming, Optimum's dam has been retained within the family and has a 25-code son in the

pipeline. With these credentials, I'm confident he's a bull to keep a close eye on!

Joining our Forward Pack team, Optimum currently sits at 493gBW and is sired by the previously acclaimed BUELIN BM EQUATOR S2F. Optimum was the last bull to be purchased from Hans before his retirement – what a fitting acknowledgment for all he has achieved over the years. Congratulations!

122034 BUELIN MB BLAST-OFF S1F

No stranger to breeding Premier Sires bulls, (the previously mentioned Equator held his worthy spot for a commendable period), Stefan Buhler has done it again as we welcome BUELIN MB BLAST-OFF SIF into the fold. Much like his sire, MCKAY BM BAKERBOY-ET S2F, Blast-Off is a natural all-rounder. His admirable combination of production and type strengths includes a positive fertility gBV of 4.4, modest liveweight gBV at 37 kg, and is rounded out with his udder overall gBV at 0.73. Confidence in this sire was evident early with his inclusion into our Forward Pack team at the start of the season. His recent climb to 369 gBW is simply the cherry on top.

Blast-Offs dam, BUELIN BEAMER BINKY SOF was nothing short of phenomenal in her own right. Across six consistent lactations, she delivered outstanding production - starting with 868 solids as a two-year-old and improving year on year, finishing her career north of 1,000 solids and a PW of 909 before exiting the herd. While Stefan has recently stepped back from the dairy industry after selling his herd earlier this year, given what we have coming through the pipeline from the Buelin stud, I am confident more accolades are still to come!

122034 Buelin MB Blast-Off S1F

122093 TRONNOCO AR SADIO-ET S3F

TRONNOCO AR SADIO-ET S3F continues to impress. A result of the Discovery Programme, (a joint venture between Holstein Friesian New Zealand and LIC) Sadio was an LIC favourite in his genomic days, previously being utilised as a Sire of Sons. Sired by MEANDER MG ARENA-ET S3F, it's particularly pleasing to see Sadio trending so positively, making him a natural inclusion into our Forward Pack team as a spring graduate.

Delivering 111 kg of combined fat and protein, Sadio's production and impressive gBV for milk volume (1,998 litres) are competitive with those of leading overseas sires - all while maintaining the medium liveweight and stature so well suited to New Zealand's pasture-based systems.

Bred by Tony and Keri O'Connor of Timaru, Sadio hails from a family with a long history of proven success. His dam, TRONNOCO M SUZANN-ET S3F is a sister to TRONNOCO I STELLA-ET who has achieved notable success herself, producing sires such as TRONNOCO MG SPEROS-ET and TRONNOCO E SAINI-ET S3F, to name a few. Suzann scored a 7 udder overall and 8 dairy conformation score at inspection, so it's no surprise Sadio carries an impressive udder overall gBV of 0.92 and dairy conformation of 0.37 - a testament to the strength and consistency of this exceptional cow family.

122093 Tronnoco AR Sadio-ET S3F

122056 MAH FINN SAGE-ET SIF

A Premier Sires regular over the years, MAH FINN SAGE-ET SIF is once again proving his value. Bred by Cherie and Michael Berkers of Southland, this A2A2 sire has featured in our A2A2 Premier Sires team since the start of the season. Sired by MILL-RIDGE TS FINN-ET SIF, Sage was always destined to deliver on production, and with just 7kg of liveweight, he's leading the charge for efficiency. Don't let his sire line fool you though, Sage adds balance where it counts, bringing a commendable 0.65 udder overall gBV to the fold

Sage is out of MAH ST SAFFRON SIF, a production queen in her own right who last season surpassed 700 milksolids for a second consecutive season. A third-generation contract dam, Saffron is sired by STOUPES BG TRIUMPHANT SIF and hails from a maternal line that has consistently scored 7 for udder overall. The Berkers made the decision to invest early in Saffron, taking advantage of embryo transfer work when she was a yearling, and the results speak for themselves as we witness the success of Sage.

122056 Mah Finn Sage-ET SIF

Looking ahead

While it's still early days in the season and the full picture is yet to emerge, these sires are already giving us a glimpse of the talent coming through. As more daughters are herd tested and additional scores flow in from TOP inspections, we'll gain an even clearer understanding of their true potential. But for now, it's exciting to see these early movers making their mark.

Jersey The next generation

Quality, efficient cows are guaranteed money in the bank.

By Danie Swart, Bull Acquisition Manager

pring is an important time of the year when crucial breeding decisions are being made. Cows are mated with the best genetics in New Zealand, and most farmers are driven to improve the quality of their herds. Getting progeny from the best cows is an excellent way to fast-track genetic gain. From September onwards, new exciting graduates are getting their first daughter proofs, with more daughters herd tested and added to the bull proofs after every AE run. This is an exciting time for the Breeding team, and we are watching the information with anticipation.

I am fortunate to profile a few of the new graduates showing good promise after the last two AE runs.

322002 PAYNES RB GENERATION-ET

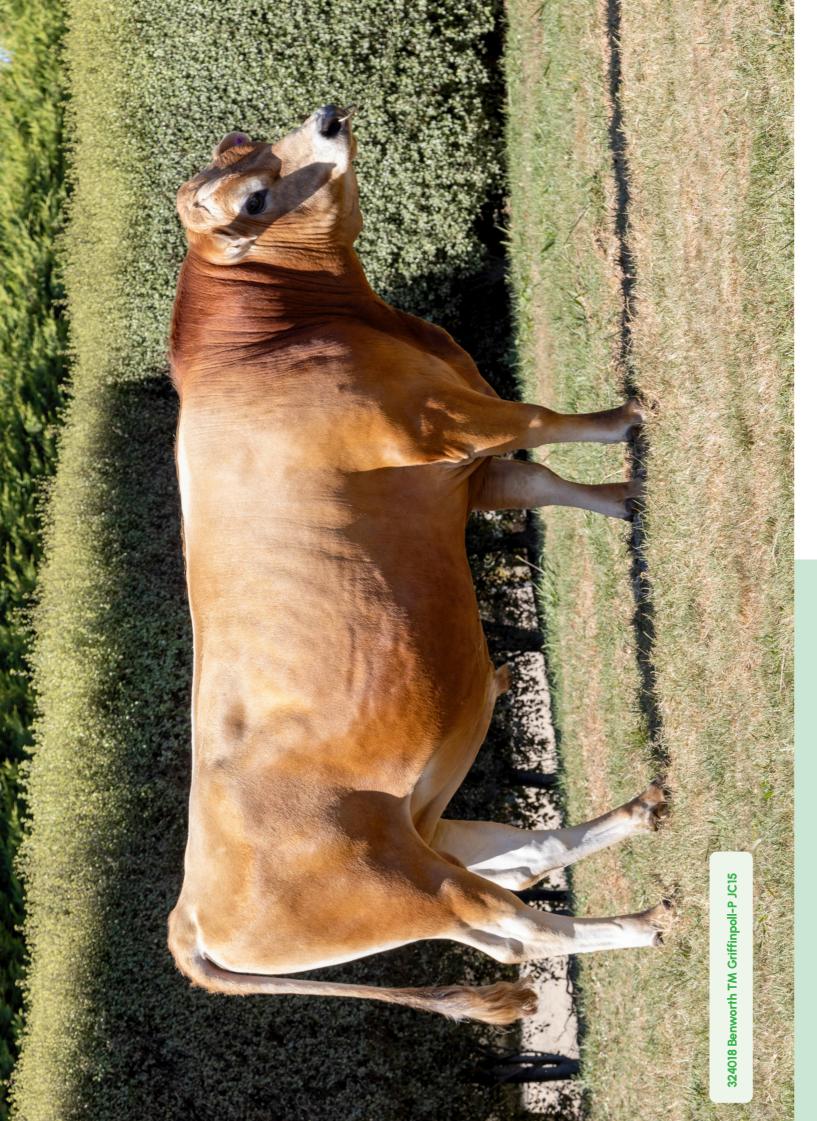
The Paynes family from Cambridge (pg 4) are well-known for breeding top KiwiCross and Friesian bulls, and now they have found success in breeding high-ranking Jersey bulls like Paynes RB Generation-ET. Generation is sired

322002 Paynes RB Generation-ET

322001 Paynes Titus Excelsior-ET

by the great bull, Rockland LQ Berkly. Protein and fat gBV's are standouts in this pedigree, and it's no surprise with a pedigree stacked up with high-production sires like Larson, Conrad, Quadrant, Kingpin and Degree. The grand dam of Generation, sired by Degree, was an important cow in Brad's flushing program, and produced a successful family in the Payne's herd. Generation is currently in the Premier Sires Forward Pack team.

322001 PAYNES TITUS EXCELSIOR-ET


Another exciting bull from the Paynes stable, Excelsior was one of the highest-ranked genomic bulls in 2021 and entered the SPS team in 2022. Once again some of the very best sires are featuring in his pedigree with the likes of Banff, Goldie and Integrity. High production is noticeable in the maternal line with high PW's and LW's. Excelsior is a good all-rounder with high fat, good fertility, udder overall and excellent somatic cell count. Excelsior is in the Premier Sires Sexed team.

322047 WILLIAMS BANFF JULIAN

If you think about Northland, many will immediately relate that to good Jersey cows and herds. Julian is from the great Northland herd of Mary Williams and her boys. He is a high gBW bull with great efficiency and good udder gBV's. He is from the well-proven J-family in the Williams herd, which is known for consistent good production and longevity. Julian is sired by Glanton Desi Banff, one of the best proven bulls over the past few years, producing cows with excellent production and farmer satisfaction. Julian is in the Premier Sires Sexed team.

322047 Williams Banff Julian

2025 Spring Jersey Forward Pack Team (A2A2)

Sire 320029 319019 321053 321022 324014 322002 323008	320029 ROCKLAND LQ BERKLY 319019 GLENUI BT LIBERATION-ET 321053 GREENMILE LQ TAKAHE 321022 ELLSONDEXTER ASHS3J 324014 ROCKLAND PLUTO COLSON-ET 322002 PAYNES RB GENERATION-ET 324018 BENWORTH TM GRIFFINPOLL-P JCIS 323008 TRONJIBUZZZAZU	Sire 324205 323023 324020 324017 323004 323024 324209	BUSYBROOK LAMAR BUSHWACKER PAYNES TITUS ECLAIRE CAWDOR PLUTO AQUARIUS HAWTHORN GROVE OM HIGHLANDER RIVERINA BAS ACHILLIES-ET S2J PAYNES FIRST MECHANIC LYNBROOK DEFINITION BROOKLYN
324012	GRALYN BURNLEY DURANGO		

gBW/Rel%	Milkfat	Protein	Milk	Liveweight	Functional Survival	Milkfat %		Protein %	Heifer Calving Dif	Cow Calvina Dif))	Ferfility
_	auickly	placid	fast	desirable			tall	capacions		Sioping	wide	
0.5					3 0	0.0						
0	ı					>						
5					u							
-0.5	0.15	0.14	0.21	0.24	0	j	-0.70	0.38		-0.30	-0.13	
Management	Adapts to Milking	Shed Temperament	Milking Speed	Overall Opinion	ocito magical		Stature	Capacity		Kump Angle	Rump Width	

\$380/98 34.5 kgs 5.2 kgs -487 Litres -33 kgs 1.3% 5.9% 4.5% -8.1%

2025 Spring Jersey Sexed Team (A2A2)

Sire		Sire	
322001	PAYNES TITUS EXCELSIOR-ET	324206	OKURA JULIAN LUGER
323028	HAWTHORN GROVE L ZOLTIN-ET	324204	GLENUI ORSIM SIRPRISE-ET
324032	MEADOWSTONE GB SLAMDUNK S3J	323206	LYNBROOK TN TE ANAU
322047	WILLIAMS BANFF JULIAN		
324003	324003 OKURA NGATORO IDRIS		
324207	WILLIAMS JULIAN ISAIAH		
323046	323046 LYNBROOK TITUS SANTANA		
324023	324023 ROSSUM LOTTO EXLO		
323047	LYNBROOK BERKLY ORYX		

\$380/088\$

\$387/97%

gBW/Rel%	auickly Milkfat	placid Protein	fast	desirable Liveweight	Functional Survival	Milkfat %	capacious	sloping calving Di	wide Cow Calving Dit	curved	strong	strong	high NB: the reliability of a team o	always higher than using just	close	Long	desirable	desirable
0 0.5					0 0.5													
-0.5	0.14	0.14	0.11	0.18	-0.5	-0.87	0.35	-0.26	-0.08	0.07	0.47	0.49	0.66	0.20	0.04	0.19	0.64	0.32
Management	Adapts to Milkina	Shed Temperament	Milking Speed	Overall Opinion	Conformation	Stature	Capacity	Rump Angle	Rump Width	Fegs	Udder Support	Front Udder	Rear Udder	Front Teat Placement	Rear Teat Placement	Teat Length	Udder Overall	Dairy Conformation

strong strong strong high close close Long desirable

0.08 0.31 0.43 0.10 -0.22 0.24 0.24 0.51

Legs Udder Support Front Udder Rear Udder

\$387/97
29 kgs
1.11 kgs
-581 Litres
2.4%
5.9%
4.5%
-9.0%
6.5%
-0.29

PREMIER SIRES

2025 Spring Holstein-Friesian A2A2 Team

Sire		Sire	
124030	WAITARIA MG KINGTIDE-ET SIF	124068	GLENMEAD POLLMAN VELOCITY SIF
124032	MAHAREE ICARUS BARRETT S2F	124066	RIDDOCH HIGHRISE LEO S2F
122044	MEANDER FINN ALASKA-ET SIF	123071	AUAHI SPYRO LAVISH SIF
124008	BUNGAY LUCID MAINLAND SIF	123100	TRONNOCO SG SEVERYN-ET
123005	PAYNES MJ PROTECTIVE-ET S2F	124001	PAYNES MONOPOLL POLLEN-P S2F
124070	MAH ALASKA YOSEMITE-ET SIF		
124014	BUELIN LOMU CROMWELL S2F		
124040	BAGWORTH FREE BANKSY SIF		
122065	PRATTLEYS LUCID FREE-STYLE SIF		

37.1 kgs 37.1 kgs 22.3 kgs 366 Litres 51 kgs 2.1% 5.0% 4.1% 5.9% 1.2% 0.03 \$292/97%

\$292/97	37.1 kgs	22.3 kgs	366 Litre	51 kgs	2.1%	5.0%	4.1%	80	9.4%	1.2%	2.7%	0.03	5	5	of bulls is	t one bull				
gBW/Rel%	Milkfat	Protein	Milk	Liveweight	Functional Survival	Milkfat %	Protein %		Heirer Calving Dir	Cow Calving Dif	Fertility	SCC	U	2	NB: the reliability of a team of bulls is	always higher than using just one bull	Date 10/10/2025		(
	quickly	placid	fast	desirable		=	Tall	capacious	sloping) Q	D :	curved	strong	strong	high	close	close	Long	desirable	desirable
0.5					0.5	25														
5 0					0				_											
-0.5	0.20	0.20	0.17	0.31	-0.5		0.57	0.30	0.05	0.44	5 6	9	0.52	0.46	0.32	0.21	0.37	-0.23	0.50	0.36
_		+				-										=	+			_

ront Teat Placen Rear Teat Placen

Rear Udder

Jdder Suppor

Rump Width

Jdder Overall

2025 Spring Holstein-Friesian Forward Pack Team

Sire		Sire	
121005	PEMBERTON GG PROPANE SIF	122016	TANGLEWOOD MS WAVE SIF
121046	BELLAMYS RS GADSBY-ET SIF	124027	WAITARIA RAFA HARVARD-ET SIF
120003	SCOTTS BV DARIUS-ET	124058	WAIMATA SHOOTER RITCHIE S2F
121075	JONES TIGER FAITHFUL S2F	123058	WITTENHAM JACKPOT AEGON-ET S2F
121069	TAFTS TRADESMAN S2F	122015	TANGLEWOOD MF STORM SIF
121035	BALANTIS TR TRICK-ET SIF	123067	MEANDER MANU ALLEGIANCE SIF
122085	HAZAEL BE OPTIMUM-ET S2F	122034	BUELIN MB BLAST-OFF SIF
124048	MEANDER SS ALCHEMIST-ET S2F	122093	TRONNOCO AR SADIO-ET S3F
124045	MEANDER RAFA ASPIRING-ET SIF	122070	COSTARS MB QUICKFIRE-ET S2F

\$408/99%

Management	-0.5	0	0.5	_	gBW/Rel%	\$408/99
Adopts to Milking	0.31	l		OLIOKIN VI	Milkfat	50.1 kgs
Shed Temperament	0.31			oioola oioola	Protein	32.3 kgs
				5 +	Milk	644Litres
Deeds Silverial	0.21			<u> </u>	Liveweight	51 kas
Overall Opinion	0.40			desirable		, ,
Conformation	-0.5	0	0.5	_	Functional Survival	7.0%
Q. 400	0 0 0	ŀ		= 7	Milkfat %	2.0%
Starure	0.09		ı,	E D	Protein %	4.1%
Capacity	0.35			capacions	Heifer Calvina Dif	%0
Rump Angle	0.03	_		sloping	HO Scripto Moo	1.3%
Rump Width	0.54			wide		2 2
Legs	-0.07			curved	rerminy	9.7%
	0.40			() ()	SCC	-0.12
Loddne Jappo	74.0	Ш		DIOLIS	BCS	0.08
Front Udder	0.45			strong		
Rear Udder	0.31			high	NB: the reliability of a team of bulls is	of bulls is
Front Teat Placement	0.21			close	always higher than using just one bull	st one bull
Rear Teat Placement	60.0			close	Date 10/10/2025	
TeatLength	-0.04	_		Long		
Udder Overall	0.48			desirable	(E POLICE CONTRACTOR DE
Dairy Conformation	0.41			desirable		
			* TNIGOTOCH	HOOFBOINT® (Nitrogen Methane		

PREMIER SIRES

OOFPRINT® (1) Nitrogen (1) Methane

2025 Spring Holstein-Friesian Sexed Team (A2A2)

PREMIER SIRES

MAHAREE SHEFFIELD BINGO-ET S2F MEANDER SAQ LANDMARK-ET S3F MARQUEE GASOLINE LOKI-ET S3F

> 123065 124077 124004

> > WAITARIA LOMU TANGAROA-ET S3F

BUSYBROOK SVI PAYCHEQUE S3F

DICKSONS FINN MINDSET-ET SIF

122008

PAYNES GADSBY ELEMENT SIF

123002

OAKLINE SG ENFORCER-ET S3F

124016

124031

PAYNES GADSBY ENTOURAGE SIF

123004

MAHAREE FINN TONIC-ET SIF

MEANDER POLLMAN WYATT SIF

MAH FINN SAGE-ET SIF

MILLNERS PP LIFE-OF-RILEY S2F

124036 124025

LIGHTBURN ICARUS ROWDY

BELLAMYS MOJO GOLD CHIP S2F PAYNES MON INVINCIPOLL-P S2F

2025 Spring Holstein-Friesian Daughter Proven Team

Sire		Sire	
121046	BELLAMYS RS GADSBY-ET SIF	119002	BELLAMYS DM GALANT-ET SIF
120003	SCOTTS BV DARIUS-ET	119079	BUSY BROOK DEALER-ET S2F
121075	JONES TIGER FAITHFUL S2F	120069	MELROSE BM VISTA-ET S2F
121069	TAFTS TRADESMAN S2F		
121057	TRONNOCO E SAINI-ET S3F		
120021	MCKAY BM BAKERBOY-ET S2F		
121051	BUSYBROOK MA GYPSY SIF		
121063	MARCHEL WM JACKPOT-ET S2F		
121022	WAITARIA SPEROS THOR SIF		

0.30

Adapts to Milking Shed Temperament

0.17 0.40

verall Opinion Milking Speed

\$333/99%

\$33	46.6	29.2	672	28	9	4	4.	7	Ξ	5.	Υ	c	j
gBW/Rel%	Milkfat	Protein	Milk	Liveweight	Functional Survival	Milkfat %	Protein %	Heifer Calving Dif	Cow Calving Dif	Fertility	SCC	O Ca	
-	auickly	placid	fast	desirable	-	-	100	cabacions	Buidols	wide	curved	strong	20040

0.70

Rump Angle

0.42

0.22

ear Udder

Front Udder

0.17

Front Teat Placem Rear Teat Placem

Teat Length

0.48

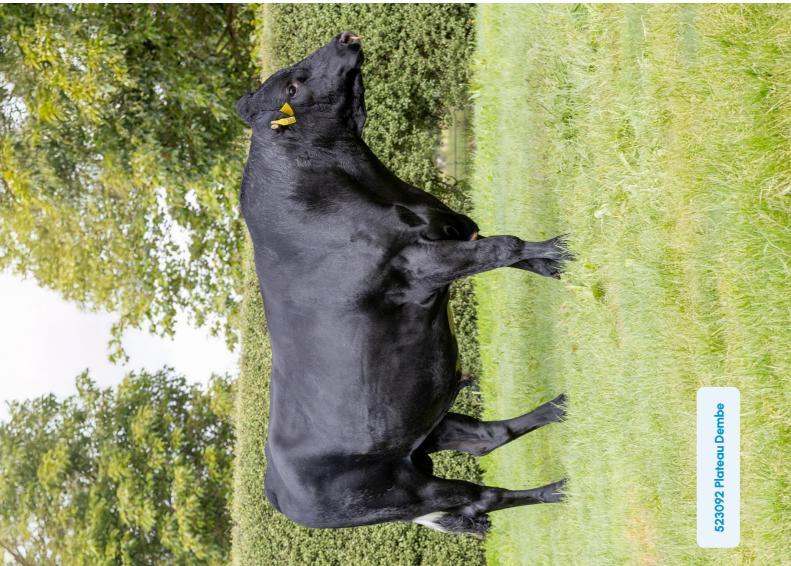
Rump Width

NB: the reliability of a team of bulls always higher than using just one k

high close close Long

INT® (Nitrogen (Methane Efficiency (Efficiency

Adapts to Milking Shed Temperament erall Opinion Milking Speed Jdder Support ump Angle Rump Width 3/99 5 kgs 2 kgs Litres kgs .9% .0% .0% .0% .00.1


NB: the reliability of a team of bulls is always higher than using just one bull Date 10/10/2025 Heifer Calving Dif Cow Calving Dif tall
capacious
sloping
wide strong strong high close close Long desirable desirable curved 0.60 -0.04 0.55 0.34 0.26 0.32 -0.19 0.55 0.14 0.35 -0.06 Front Teat Placemen Front Udder Rear Udder

27.6 kgs 521 Litres 48 kgs 2.4% 4.1% 6.4% 1.1% 2.6% -0.03

\$330/98 40 kgs

\$330/98%

100FPRINT® (1) Nitrogen (1) Methane Efficiency

2025 Spring KiwiCross Daughter Proven Team

Sire		Sire	
519034	GORDONS FLASH-GORDON	520091	MARSHALL PAPAMOA
520063	520063 SANSONS EMERALD-ET	521034	CAWDOR POHARA
521048	RHANTANA IRIS ET	518038	WERDERS PREMONITION
520048	520048 BALDRICKS TOUCHDOWN		
520054	520054 PAYNES PALATINE-ET		
521072	BALDRICKS SPECTACULAR		
521011	PAYNES SCHOLAR-ET		
521002	PAYNES MANOEUVRE-ET		
520068	MORGANS MALAWI		

\$354/99%	
WEIGHTED AVERAGES OF PREMIER SIRES	

Adapts to Milking 0.11 quickly Milkfat 36.2 kgs Shed Temperament 0.11 placid Milkfat 123 Litres Milking Speed 0.07 0.5 1 2.4% Overall Opinion 0.17 0.5 1 10 kgs Conformation -0.14 0.05 1 4.2% Stature -0.14 0.34 4.2% Rump Angle 0.01 0.05 1 4.2% Rump Angle 0.01 0.01 1.1% 4.2% Legs 0.01 stoping Cow Calving Diff -1.1% Legs 0.02 capacious Heffer Calving Diff -1.1% Legs 0.01 stoping Cow Calving Diff -1.1% Legs 0.02 capacious Heffer Calving Diff -1.1% Roar Udder Support 0.54 strong BCS 0.14 Rear Udder Support 0.05 light NB the reliability of a feom of bulls is always higher than using just one bull is always higher than using just one bu	Speed	Management	-0.5	0	0.5	-	gBW/Rel%	\$354/99
Speed 0.07 Frast Frast Milk	Speed 0.01 Protein	Adapts to Milking	0.11			quickly	Milkfat	36.2 kgs
Speed 0.07 Flast Milk	Speed 0.07 Fast Milk	Shed Temperament	0.11			placid	Protein	18.2 kgs
formation -0.5 0 0.5 1 Functional Survival formation -0.14 Milkfat % Functional Survival re -0.14 Milkfat % Protein % city 0.34 Capacious Heifer Calving Dif Angle 0.01 wide Fertility Angle 0.01 wide Fertility Vividith 0.54 strong BCS Vivider Cow calving Dif Cow calving Dif Vivider Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cox calving Dif Cow calving Dif Cow calving Dif Cow calving Dif Cox calving Dif Cow calving Dif C	Comformation 0.17 Conformation 0.18 Conformation 0.19 Conformation 0.19 Conformation 0.19 Conformation 0.19 Conformation 0.18	Milking Speed	0.07			fast	Milk	123 Litres
formation -0.14 0.05 1 Functional Survival re -0.14 milkfat % re -0.14 milkfat % re -0.14 re re -0.14 re re -0.14 re re re	-0.14 toll 0.34 toll 0.01 capacious 0.01 capacious 0.01 capacious 0.03 capacious 0.043 curved 0.05 strong 0.71 curved 0.72 strong 0.73 strong 0.71 high always higher than using just on close 0.25 close 0.26 desirable 0.38 https://doi.org/10/10/2025	Overall Opinion	0.17			desirable	Liveweight	10 kgs
ref -0.14 tall Malkfat % city 0.34 capacious Herfer Calving Dif Angle 0.01 wide Protein % Nwidth -0.04 wide Fertility r Support 0.54 strong BCS Udder 0.71 high NB the reliability of a team of but always higher than using just on close Leaf Placement 0.05 lose Icong Footer Info/2025 close Icong Footer Info/2025 close Icong Conformation 0.38 desirable	re -0.14 tall Protein % city 0.34 eapacious Heifer Calving Dif Angle 0.01 wide Fertility -0.02 strong SCC Support 0.54 strong BCS Udder 0.71 high NB: the reliability of a team of but always higher than using just on close leat Placement 0.05 Long Conformation 0.38 conformation 0.38 HOOFPRINT* (D. Nitrogen Conformation) Mittogen Conformation Mittogen Conformation	Conformation	3 0	- C	0.5	-	Functional Survival	2.4%
reg -0.14 rail Protein % cify 0.34 eapacious Herfer Calving Dif rAngle 0.01 wide Fertility -0.02 curved SCC Udder 0.71 high NB: the reliability of a team of but of a team of a tea	registry -0.14 rail Protein % cify 0.34 capacious Herifer Calving Dif Angle 0.01 wide Fertility -0.02 curved Strong Cow Calving Dif Support 0.54 strong Cow Calving Dif Udder 0.43 strong SCC Lear Placement 0.05 strong NB: the reliability of a team of but a long strong and always higher than using just on close Feat Placement 0.05 close Consending Coverall 0.25 Conformation Consended Conformation 0.38 Merepane				2.0	= -	Milkfat %	5.3%
city 0.34 Refer Calving Dif Angle 0.01 Herfer Calving Dif Angle 0.01 wide Cow Calving Dif -0.02 strong SCC Lodder 0.54 Strong BCS Udder 0.71 high NB: the reliability of a team of but a long strong along that than using just on close Feat Placement 0.05 Icose Onder 10/10/2025 Feat Placement 0.16 Icose One of estrable Coverall 0.38 Icong Icong	cifty 0.34 Herfer Calving Dif Angle 0.01 wide Herfer Calving Dif -0.02 strong Cow calving Dif r Support 0.54 strong SCC Udder 0.71 high NB: the reliability of a team of building of a team of building bit of a team of building bi	Stature	-0.14			Tall	Protein %	4.2%
Angle 0.01 slopping cow calving Dif Width -0.04 wide Fertilify -0.02 strong SCC Udder 0.54 NB: the reliability of a team of but a team	Angle 0.01 sloping cow calving Dif Width -0.04 wide Fertility -0.02 strong SCC Udder 0.43 strong BCS Udder 0.071 NB: the reliability of a team of but always higher than using just on close close close Feat Placement 0.25 Long Close Content to Inorgon Foundation 0.26 Long Close Conformation Conformation 0.38 Mitrogen Efficiency Efficiency	Capacity	0.34			capacions	Heifer Colving Dif	-11%
Width -0.04 wide Cow Carwing Life -0.02 -0.02 curved SCC SCC strong BCS Udder 0.73 high NB. the reliability of a team of but a team	Width -0.04 wide Cow carving Life -0.02 eurved SCC Udder 0.54 strong BCS Udder 0.71 high NB the reliability of a team of but always higher than using just on always higher than	Rump Angle	0.01			sloping		8 3
Support -0.02 curved SCC Udder 0.54 Strong BCS Udder 0.71 NB. the reliability of a team of but a law ys higher than using just one close Image: Im	Conformation Co.02 Co.02 Co.02 Co.03 Co.04 Co.05 Co.054 Co.054 Co.054 Co.054 Co.056 C	Rump Width	-0.04	_		wide	Cow Calving Dir	%0.0
Secure of Early Element Secure of Early Element of Element Secure of Element of Eleme	Udder 0.43 strong BCS Udder 0.71 high high rither reliability of a feam of bul always higher than using just one feat Placement 0.25 close close close close conformation 0.38 heopprint* © Nitrogen of Efficiency ©	Legs	-0.02			curved	Fertility	3.7%
0.43 BCS 0.71 high NB: the reliability of a team of bull always higher than using just one close 0.05 close © Date 10/10/2025 -0.16 Long desirable 0.58 desirable	0.71 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Udder Support	0.54			strong	SCC	0.11
0.71 high 0.05 0.05 0.05 0.05 0.05 0.08 0.09 0.38 0.38 strong strong close close close desirable	0.71 high 0.05 0.05 0.05 0.05 0.05 0.05 0.08 0.38 HOOFPRINT® (Nitrogen & Efficiency (1) Parthorn						BCS	0.14
0.07 high 0.05 close 0.16 Long 0.58 desirable 0.38 desirable	0.05 0.05 0.25 -0.16 0.38 HOOFPRINT® (Nitrogen Verbran	Front Udder	0.43			strong		
0.05 close 0.25 close -0.16 Long 0.58 desirable 0.38 desirable	0.05 0.25 -0.16 -0.38 -0.38 -0.05 -0.05 -0.38 -0.05 -0	Rear Udder	0.71			high	NB: the reliability of a team	of bulls is
-0.16 Long 0.58 desirable 0.38 desirable	0.25 close -0.16 Long 0.58 desirable 0.38 desirable HOOFPRINT® & Nitrogen & Efficiency	Front Teat Placement	0.05	-		close	always higher than using ju	ist one bull
0.58	0.38	Rear Teat Placement	0.25			close	Date 10/10/2025	
0.38	0.38	Teat Length	-0.16			Long		
0.38	0.38	Udder Overall	0.58			desirable	(
	HOOFPRINT® (Nitrogen (Methane Efficiency (Efficiency (Efficiency (Dairy Conformation	0.38			desirable	6	

PREMIER SIRES

2025 Spring KiwiCross Forward Pack Team (A2A2)

Sire		Sire	
521015	PAYNES STAMINA-ET	524024	TONGATAHA TRAILBLAZER
521005	PAYNES SUBLIME-ET	524060	PLATEAU GRACIOUS-ET
520063	SANSONS EMERALD-ET	523001	PAYNES SALVATION-ET
520054	PAYNES PALATINE-ET	524051	PUKERIMU STALLONE-ET
521072	BALDRICKS SPECTACULAR	524023	MORGANS WOODSTOCK
521011	PAYNES SCHOLAR-ET	524055	BALDRICKS EVERGLADE-ET
522012	PAYNES GAMEBOY-ET	524057	STONY CREEK NUANCE-ET
522069	BENTONS SECOND-CHANCE	524028	SECRETERRY TAKODA-ET
524063	ARKANS DYNAMIC-ET	522084	ROUBROEKS AIR-RIFLE-ET
523002	PAYNES SATELLITE-ET	524059	PLATEAU GRAYSON-ET

%66/8	\$408/99	43 kgs	21.4 kgs	69 Litres	15 kgs	2.8%	5.5%	4.3%	2 0	% 	0.2%	4.5%	0.24	0	2	of bulls is	ust one bull				
\$40	%le				ight	nal Survival	%	%	9		alving Dif					eliability of a team	nigher than using ju	ate 10/10/2025			8 8
	gBW/R	Milkfat	Protein	Wilk	Livewe	Functio	Milkfat	Protein	9	Непег	C 0 × C	Fertility	SCC	a C		NB: the	always				
(0		quickly	placid	fast	desirable			ID.	capacions	sloping	wide	70	D D D D D D D D D D D D D D D D D D D	strong	strong	high	close	close	Long	desirable	
IER SIRE	Ī																				
OF PREM	0.5					0.5	25														
RAGES	0					С	_														
ITED AVE																					
WEIGH	-0.5	0.20	0.20	0.14	0.23	-0.5		-0.02	0.41	0.08	0.20	0	5	0.63	0.62	0.65	0.22	0.39	-0.35	0.70	
	unagement	pts to Milking	d Temperament	ing Speed	rall Opinion	nformation		are	acity	p Angle	p Width		٥	er Support	r Udder	· Udder	t Teat Placement	. Teat Placement	t Length	er Overall	
	WEIGHTED AVERAGES OF PREMIER SIRES	WEIGHTED AVERAGES OF PREMIER SIRES \$408/	WEIGHTED AVERAGES OF PREMIER SIRES \$408/rell nt -0.5 0 0.5 1 gbw/Rell 0.20 ouckly milkfat milkfat	WEIGHTED AVERAGES OF PREMIER SIRES \$408/relk -0.5 0 0.5 1 gBW/Relk 0.20 placed Protein	WEIGHTED AVERAGES OF PREMIER SIRES \$408/ -0.5 0 0.5 1 gbw/Rel% 0.20 quickly milkfat 0.20 placid Protein 0.14 fast milk	WEIGHTED AVERAGES OF PREMIER SIRES \$408/ -0.5 0 0.5 1 gBW/Rel% 0.20 quickly Protein 0.20 placid Protein 0.14 fast Milk 0.23 desirable Liveweight	WEIGHTED AVERAGES OF PREMIER SIRES \$408/ -0.5 0 0.5 1 gbw/Rel% 0.20 quickly milkfat Protein 0.14 fast milk 0.23 desirable Liveweight -0.5 0.05 1 Functional Survival	germent per comment -0.5 0 0.5 1 gBW/Rel% o Milking 0.20 quickly milkfat opeed 0.14 placid milk opinion 0.23 milk frunctional Survival ormation -0.5 0 0.5 1 Functional Survival	WEIGHTED AVERAGES OF PREMIER SIRES \$408/ -0.5 0 0.5 1 gBW/Rel% Allkfat 0.20 quickly milkfat Protein Protein 0.14 fast milk milk 0.23 0 0.5 1 Functional Survival -0.05 name Protein Protein	gernent -0.5 0 0.5 1 gBW/Rel% o Milking 0.20 quickly milkfat speed 0.14 placid milk opinion 0.23 milkfat Liveweight ormation -0.05 1 milkfat randing -0.05 1 milkfat milkfat milkfat milkfat randing -0.05 1 milkfat randing -0.02 milkfat milkfat randing -0.02 milkfat milkfat	WEIGHTED AVERAGES OF PREMIER SIRES \$408/	ment -0.5 0 0.5 1 gBW/Rel% ilking 0.20 quickly Protein icd 0.14 Milk fat Protein ion 0.23 Milk fat Liveweight copacious frast Liveweight Functional Survival Aution -0.05 1 Milk fat % copacious tall Protein % 0.41 capacious Heffer Calving Dif 0.08 sloping Cow Calving Dif 0.20 wide Cow Calving Dif	WEIGHTED AVERAGES OF PREMIER SIRES \$408/ Milking	#EIGHTED AVERAGES OF PREMIER SIRES ent -0.5 0 0.5 1 gBW/Rel% ng 0.20 quickly nent 0.20 placid 0.14 fast 1.00 0.5 1 like total rion -0.05	WEIGHTED AVERAGES OF PREMIER SIRES \$408/ Milkfart -0.5	#EIGHTED AVERAGES OF PREMIER SIRES ent -0.5 0 0.5 1 gBW/Rel% nent 0.20 quickly 0.14 hilk fat 0.23 fast 0.04 desirable -0.02 0 0.5 1 liveweight Liveweight	#EIGHTED AVERAGES OF PREMIER SIRES ent -0.5 0 0.5 1 gBW/Rel% ng 0.20 quickly nent 0.20 placid no.14 placid nilk fat high fast high curved sydos ent -0.5 0 0.5 1 high high for trein \$\$408/Rel% Milk fat high Rel% Milk fat high Rel% Milk fat high Protein Milk fat high Rel% Milk fat high Rel% Milk fat high Rel% Milk fat high Rel% Milk fat high Religh Protein Milk fat high Religh Protein Milk fat high Religh Protein Milk fat Milk fat high Religh Milk fat Milk fat	## WEIGHTED AVERAGES OF PREMIER SIRES Colors	## WEIGHTED AVERAGES OF PREMIER SIRES \$408/ Page	## WEIGHTED AVERAGES OF PREMIER SIRES \$408/	## PICHTED AVERAGES OF PREMIER SIRES ## -0.5

2025 Spring KiwiCross Sexed Team (A2A2)

Sire	522007 PAYNES PUMICE	523006 PAYNES SAFEGUARD	5240I7 KAINUI COBBER-ET	523007 PAYNES PRESIDE-ET	522064 BROWNS RANDY	523022 BUELIN ORAN	523092 PLATEAU DEMBE	5240II PAYNES SUCCESSION	524035 LYNBROOK ZANZIBAR	524065 RHANTANA EUPHORIA	
Sire	522059 JUFFERMANS MR-EXCLUSIVE	522077 TATAWAI WRESTLER-ET	524064 RHANTANA CHIEFTAIN	524046 BOUTONS TRADEMARK-ET	524039 WITTENHAM HOTSHOT	524019 RIVERVIEW VERGE	522038 ARKANS COMMANDO-ET	522030 SANSONS GREENSTONE	523075 ARKANS GAMBLER	5240IS MAHAREE HUNDY	

				l		
Management	-0.5	0	0.5		gBW/Rel%	\$395/98
Adapts to Milking	0.24			auickly	Milkfat	39.9 kgs
Shed Temperament	0.24			placid	Protein	18.6 kgs
Milking Speed	900			fast	Milk	-6 Litres
Overall Opinion	0.25			desirable	Liveweight	15 kgs
Conformation	Z 0-	C	0.5		Functional Survival	2.5%
		-	2.0		Milkfat %	2.5%
Stature	-0.01			ta	Protein %	4.4%
Capacity	0.52			capacions		%I C
Rump Angle	0.13			sloping		%
Rump Width	0.17			wide	Cow Calving Di	
regs	-0.01			curved	rerillity	8
Udder Support	0.55			strong	SC	0.0
Front Udder	0.53			strong	BCS	0.13
Rear Udder	0.56			high	NB: the reliability of a team of bulls is	of bulls is
Front Teat Placement	0.17			close	always higher than using just one bull	st one bull
Rear Teat Placement	0.27			close	Date 10/10/2025	
Teat Length	-0.27			Long		
Udder Overall	0.61			desirable		
Dairy Conformation	0.49			desirable		

NT® (1) Nitrogen (1) Methane Efficiency

Spring bulls available in Alpha

KIWICROSS

522030 Sansons Greenstone 522069 Bentons Second-Chance

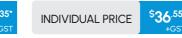
Breeding	g Details		
Breeder	J Sanson & S Greene	Dam	Sansons Rain Blackhawk
Sire	Julian Multiplier-ET	MGS	Greenwell Blackhawk

Breeding) Details		
Breeder	A & A Benton	Dam	GVHK-17-5
Sire	Scotts BV Darius-ET	MGS	Okura LT Integrity

Production	gBVs			
Protein	Milkfat	Milk	Liveweight	Fertility
20 kg	37 kg	18	17 kg	8.3 %
4.3 %	5.4 %			
Functional Survival	Somatic Cell Count	Heifer Calving Difficulty	Cow Calving Difficulty	Body Condition
2.5 %	-0.09	-4.1 / 33 %	-2.0 / 78 %	0.06

Toduction	guva			
Protein	Milkfat	Milk	Liveweight	Fertility
36 kg	68 kg	836	47 kg	3.4 %
4.0 %	5.2 %			
Functional Survival	Somatic Cell Count	Heifer Calving Difficulty	Cow Calving Difficulty	Body Condition
1.9 %	0.19	4.5 / 46 %	-1.2 / 82 %	0.15

INDIVIDUAL PRICE


TOP Traits

A2 Protein

Gestation Length

100 Daughters 42Herd

gBW/Rel \$407/83%

Management	gBV	-0.5	0	0.5	1.0
Adapts to Milking	0.25				
Shed Temperament	0.27				
Milking Speed	-0.20				
Overall Opinion	0.29				
Stature	0.13				
Capacity	0.76				
Rump Angle	0.15				
Rump Width	0.04				
Legs	0.01				
Udder Support	0.79				
Front Udder	0.75				
Rear Udder	0.82				
Front Teat Placement	0.27				
Rear Teat Placement	0.30				
Teat Length	0.21				
Udder Overall	0.89				
Dairy Conformation	0.71				

TOP Daughters

gBW/Rel \$506/82%

TOP Traits				91 Da	ughters 41	Herds
Management	gBV	-0.5	(0	0.5	1.0
Adapts to Milking	0.37					
Shed Temperament	0.39					
Milking Speed	-0.04					
Overall Opinion	0.40					
Stature	0.27					
Capacity	0.78					
Rump Angle	-0.18					
Rump Width	0.32					
Legs	-0.10					
Udder Support	0.29					
Front Udder	0.22					
Rear Udder	0.49					
Front Teat Placement	0.08					
Rear Teat Placement	-0.32					
Teat Length	0.10					
Udder Overall	0.43					
Dairy Conformation	0.66					
A2 Protein	A2/A2		TOP Do	aughters	38	}
Gestation Length	0.8 days	3	VMSI		152	4

KiwiCross F10J6

A2/A2

-4.6 days

Evaluation Date:

1436

KiwiCross F11J5

Evaluation Date:

Spring bulls available in Alpha

122034 Buelin MB Blast-Off S1F

Breeding Details						
Breeder	S Buhler	Dam	Buelin Beamer Binky SOF			
Sire	Mckay BM Bakerboy-ET S2F	MGS	San Ray FM Beamer-ET S2F			

		•		
Binky SOF	Breeder	M & C Berkers	Dam	Mah ST Saffron SIF
eamer-ET S2F	Sire	Mill-Ridge TS Finn-ET S1F	MGS	Stoupes BG Triumphant S1F
	Product	tion gBVs		

Protein	Milkfat	Milk	Liveweight	Fertility
30 kg	41 kg	447	37 kg	4.4 %
4.2 %	5.0 %			
Functional Survival	Somatic Cell Count	Heifer Calving Difficulty	Cow Calving Difficulty	Body Condition
20%	0.15	601209	_02/00%	-0.06

Protein	Milkfat	Milk	Liveweight	Fertility
21 kg	65 kg	256	7 kg	1.7 %
4.2 %	5.6 %			
Functional Survival	Somatic Cell Count	Heifer Calving Difficulty	Cow Calving Difficulty	Body Condition
Survivai	Cell Count	Difficulty	Difficulty	Condition

INDIVIDUAL PRICE

Production gBVs

SPRING PACK

INDIVIDUAL PRICE

gBW/Rel \$485/85%

Breeding Details

SPRING PACK

gBW/Rel \$369/81%

TOP Traits				77 Da	ughters 32	Herds
Management	gBV	-0.5	0)	0.5	1.0
Adapts to Milking	0.15					
Shed Temperament	0.15					
Milking Speed	0.19					
Overall Opinion	0.27					
Stature	0.54					
Capacity	0.29					
Rump Angle	-0.31					
Rump Width	0.70					
Legs	0.05					
Udder Support	0.67					
Front Udder	0.48					
Rear Udder	0.57					
Front Teat Placement	0.46					
Rear Teat Placement	0.76					
Teat Length	-0.56					
Udder Overall	0.72					
Dairy Conformation	0.35					
A2 Protein	A1/A2		TOP Da	ughters	27	7
Gestation Length	-5.6 days	5	VMSI		144	7

Friesian F15J1	
Pagistared Padigrae (supplementary)	

TOP Traits				125 Du	ugnters c	л пет
Management	gBV	-0.5	()	0.5	
Adapts to Milking	0.18					
Shed Temperament	0.18					
Milking Speed	0.10					
Overall Opinion	0.36					
Stature	0.17					
Capacity	0.06					
Rump Angle	-0.02					
Rump Width	-0.14					
Legs	0.02					
Udder Support	0.58					
Front Udder	0.58					
Rear Udder	0.24					
Front Teat Placement	0.49					
Rear Teat Placement	0.28					
Teat Length	0.30					
Udder Overall	0.65					
Dairy Conformation	0.18					
A2 Protein	A2/A2		TOP Do	aughters	4	7
Gestation Length	-3.2 day	S	VMSI		15	08

Evaluation Date:

Friesian F16 Registered Pedigree (supplementary)

Evaluation Date:

Spring bulls available in Alpha

322001 Paynes Titus Excelsior-ET

322002 Paynes RB Generation-ET

Breeding Details						
Breeder	B & C Payne	Dam	Paynes 13-60 S3J			
Sire	Thornwood Banff Titus	MGS	Okura LT Integrity			

Breeding	g Details		
Breeder	B & C Payne	Dam	Paynes 19-132 ET
Sire	Rockland LQ Berkly	MGS	Camp BC Trojan S3J

Production	govs			
Protein	Milkfat	Milk	Liveweight	Fertility
6 kg	38 kg	-385	-50 kg	8.0 %
4.4 %	5.9 %			
Eurotion of	Comombio	Unifor Calaina	Carry Carlysiana	Dodu
Functional Survival	Somatic Cell Count	Heifer Calving Difficulty	Cow Calving Difficulty	Body Condition

. roadenon	. 95 45			
Protein	Milkfat	Milk	Liveweight	Fertility
10 kg	50 kg	-559	1 kg	5.2 %
4.7 %	6.3 %			
Functional Survival	Somatic Cell Count	Heifer Calving Difficulty	Cow Calving Difficulty	Body Condition
2 = %	0.00	10 0 / 00 %	2 4 / 00 %	0.07

3.5 %

Jersey J16

-2.1 / 96 %

VIDUAL PRICE	\$ 36 .55
-	

SPRING PACK FROM	
TROM	

gBW/Rel \$496/83%

TOP Traits 95 Daughters 42 Herds				rs 42 Herds	
Management	gBV	-0.5	0	0.5	1.0
Adapts to Milking	0.08				
Shed Temperament	0.08				
Milking Speed	0.05				
Overall Opinion	0.14				
Stature	-0.94				
Capacity	0.11				
Rump Angle	0.06				
Rump Width	-0.02				
Legs	0.04				
Udder Support	0.63				
Front Udder	0.55				
Rear Udder	0.78				
Front Teat Placemer	ot 0.24				
Rear Teat Placemen	0.24				
Teat Length	0.01				
Udder Overall	0.76				
Dairy Conformation	0.24				
A2 Protein	A2/A2		TOP Daughters 29		29
Gestation Length	-2.6 day	S	VMSI		1446

gBW/Rel \$473/82%

Production aBVs

TOP Traits				90 Daughters 46 Herds			
Management	gBV	-0.5	0		0.5	1.0	
Adapts to Milking	0.36						
Shed Temperament	0.35						
Milking Speed	0.46						
Overall Opinion	0.47						
Stature	-0.26						
Capacity	0.30						
Rump Angle	-0.27						
Rump Width	-0.38						
Legs	-0.02						
Udder Support	0.54						
Front Udder	0.58						
Rear Udder	0.81						
Front Teat Placemen	t -0.02						
Rear Teat Placement	-0.15						
Teat Length	0.16						
Udder Overall	0.66						
Dairy Conformation	0.30						
A2 Protein	A2/A2		TOP Dau	ghters	27	7	
Gestation Length	-0.2 days	3	VMSI		147	72	

Registered Pedigree

Reaistered Pediaree

Short Gestation Length (SGL) Dairy

1. More Days in Milk

Maximise value from lower genetic merit cows through extended days in milk by using Short Gestation Length (SGL) bulls, which can reduce gestation by up to 12 days.

And the sooner the cow calves, the sooner she'll be back in the shed

Increasing days in milk is one of the most effective ways to improve productivity, increasing kilograms of milksolids (kgMS) per cow.

The Days In Milk Opportunity

12 extra days milking per cow at 1.87kg MS/day and a \$10 payout = \$224

If 80 cows calve to SGL, that's \$17,920 extra income.

2. Multiple Fertility **Advantages**

Replacement AB

A tighter calving spread means more recovery time between calving and the planned start of mating. This reduces late-season challenges, minimises interventions, and simplifies workload.

Earlier-calving cows have more time to start cycling and regain BCS before mating, improving conception rates and the six week in calf rate. Lower empty rates provide a greater chance of discretionary culling. Overall, this results in a more efficient, productive herd.

Save your efficient, highly productive, and high BW cows. Tactical use of SGL can help save a high merit cow which has cycled late this season, meaning her calving can be brought forward into the replacement AB window next season. This helps maintain optimum herd age structure and productivity.

3. No bull - fewer hassles

SGL semen is a cost-effective alternative to using natural mate bulls during the tail-end of mating. SGL straws are usually a more costeffective option compared to leasing, purchasing, and feeding run

Artificial breeding also reduces the risks and costs associated with bull fertility, biosecurity, staff health & safety, performance breakdown, and farm damage.

SGL Dairy® Focus Pack	Avg. Gest.	Price	
Frozen		\$23,25	
Fresh (Including technician)	-21 days	Premier Sires sliding Scal SGL Dairy	
Fresh DIY			

The value of animal testing for farmers

Tim Cameron recently joined LIC as Head of Diagnostics. With years of experience as a dairy vet, he's passionate about how testing & diagnostics can help farmers improve animal health, performance and profitability

By Tim Cameron Head of Diagnostics

t LIC, I'm working with the Animal Health team which covers herd testing, GeneMark® Genomics, and animal health diagnostics.

What excites me about testing, and why it's so important for the sector, is its ability to help farmers. Testing lets you understand what is happening to your animals and make better decisions for your herd.

The value for you

When you have accurate data, it's easier to move forward with clarity and speed, reducing risk and avoiding costly mistakes. The opportunities are simple:

- Smarter breeding and mating calls: Testing shows
 which cows are worth keeping and breeding from, so
 you can lift the quality of your herd faster. With the
 advances in genomic testing we can also accurately
 predict the genetic potential and parentage of cows.
- Less disease and wastage: Spotting problems
 earlier means fewer sick cows, less money wasted on
 treatments that don't work, and fewer animals leaving
 the herd too soon. A great example of this is Johne's
 disease testing, alongside BVD testing. If this leads to
 less cow wastage, there is more ability to cull based
 on other important traits.
- More milk from healthier cows: With better decisions you end up with cows that last longer, work harder, and put more in the vat.

Focus for the next 12 months

Looking ahead, our Animal Health team has several key priorities, all aimed at delivering greater value on farm. We're focused on making tests more accessible when you need them, with smoother booking processes, timely delivery, accurate results, and easier returns. We're also improving our reporting to provide clearer, more actionable insights, especially within GeneMark Genomics. And we'll be working closely with vets to ensure you receive consistent advice and the right tools to help you achieve your goals.

Mastitis Multiplex PCR Test – What it is and why it matters

Mastitis is one of the most expensive and frustrating issues for dairy farmers. Subclinical infections, in particular, drive-up bulk Somatic Cell Count (SCC) and quietly drain production and profit.

The Multiplex PCR test turns uncertainty into clear, practical options:

- · Better targeting: no more guessing
- · Less waste: avoid ineffective treatments
- Fewer headaches: reduce ongoing mastitis problems
- Healthier herds: lower bulk SCC and more milk in the vat.

The Mastitis Multiplex PCR test uses milk samples collected during herd tests to identify the specific bacteria behind subclinical mastitis. It screens for:

- · Streptococcus uberis
- · Staphylococcus aureus
- · Streptococcus dysgalactiae
- $\cdot \ blaZ \ gene$

Each of these bacteria behaves differently and knowing which one you're dealing with can influence your next steps. For example, the blaZ gene can show resistance in the bacteria to penicillin type antibiotics which can be helpful in identifying which treatment is best to use on farm. This knowledge helps you and vets decide whether to treat, hold until dry-off, or consider culling.

Results are delivered by your vet, so you get expert advice and support in making confident decisions for each cow.

Update from your Shareholder Reference Group

Welcome to the first update from Shareholder Reference Group (SRG) chair Ben Smith.

he SRG is a group of LIC shareholders who represent your voice, provide feedback, and work closely with LIC's Board and management to ensure farmer owners remain at the heart of decision-making. Through this column, we'll share updates on our work, highlight key changes within the group, and keep you connected with how your views are being heard.

In this edition, I wanted to share a few changes to the SRG membership. Firstly, we're pleased to welcome three new members:

Clarence Stolte

Clarence is based in Carterton in the Lower North Island along with his wife Elise and their five children. Raised on a poultry farm, Clarence has since pursued dairy farming, climbing the traditional ladder to farm ownership. Today, he is farming 370ha of dairy and beef, as well as milking 500 cows in their split calving operation.

Hadlee Cade

Hadlee passionate advocate for New Zealand's agribusiness sector and rural communities, Hadlee has over a decade of experience in practical farming, operations and leadership. He is currently the Senior Whenua Services Specialist at Te Tumu Paeroa, supporting Māori landowners across Aotearoa to achieve their agribusiness goals. His career began on dairy farms and as an AB Assistant for LIC, before moving into leadership roles with the New Zealand Defence Force. Hadlee is committed to farmer-led. sustainable solutions and welcomes engagement from landowners and stakeholders to help build a thriving future for rural New Zealand.

Linda Rollinson

Linda and Pete, along with their three children, own a 700-cow farm in Lauriston, Mid Canterbury. They started dairying on family farms

SRG Chair

Lyndhurst Irrigation Ltd.

Finally, after eight years of service, **Mark Hooper** has stepped down from his role as SRG Chair and Member for the Lower North Territory. I would like to acknowledge his significant contribution to the co-operative during his tenure, and on behalf of the SRG we'd like to thank him for his dedication to bringing a strong farmer voice to the table.

I'm honoured to be taking over as Chair of the SRG. Together with my wife Chloe and our three daughters we farm in Waimate, South Canterbury, I'm passionate about the importance of co-operatives and the role they play in helping farmers build efficient, productive, and sustainable businesses.

As members of the SRG, we're proud to represent your interests and keep the connection strong between farmer owners and LIC's leadership. We look forward to continuing this work together with you.

Bruh

Ben Smith, SRG Chair

If you have any questions or feedback, get in touch with your local SRG Member - they're here to help. lic.co.nz/shareholders/ shareholder-reference-group/

Celebrating 40 years of MINDA®

The evolution of herd management

When we stand back and look at the last 40 years of MINDA, it's rather extraordinary.

INDA as we know it, started as one sheet of paper essentially designed as the 'birth, deaths and marriages' certificate of dairy cows, and now is a full herd management platform which holds billions of data points.

In 1985, farmers used 'herd record sheets' which were rows of blank paper where every vital detail of their animals was recorded. Births, deaths, matings, calvings, treatments, everything was manually tracked on paper and sent to LIC. This was the beginning of MINDA, short for Management Information for Dairy Animals, although at the time, the name was just an internal abbreviation.

It was a humble start, but the idea was revolutionary, to create a single database for every dairy animal in the country, forming the basis for all future herd recording.

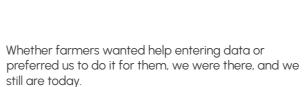
After six years of development, the official MINDA animal database went live. Providing farmers a unique lifetime identification of their animals, verifying ancestry and parentage for current and future herd members.

This meant, for the first time ever, animals could be traced throughout their lives - their health, genetics, and abnormalities could be monitored over generations. This also meant, animals' genetic progress across herds

and the entire industry became trackable.

Before the internet was reliable, MINDA evolved into two early software versions:

Dairyman and DairyWin, distributed on floppy disks to early adopting tech-savvy farmers for trial. These were the beginner versions of what we now know as MINDA.


Following this was the birth of 'MINDA Link' otherwise known as MINDA's green-logo era. MINDA Link allowed farmers to enter their own data themselves, but with limited reporting.

As computing power grew, we introduced MINDA Pro which gave farmers a full set of reports they could generate from their desktop. CDs replaced floppy disks, and farmers began taking herd management into their own hands.

With more farmers entering their own data, support became essential. So, in 2003 we opened a dedicated Customer Experience Centre for farmers who needed assistance. On day one, our team received over 2,500 calls from farmers.

A decade later MINDA has had some integral additions:

Launch of MINDA Home, our first web-based product.

2012 - Integration with NAIT and launch of Land & Feed tools.

First MINDA app launched, beginning with calving entry.

2014 - Dedicated apps for pasture and mating.

2015 - We rolled all the apps into one: the MINDA One App.

2016 - Launch of MINDA LIVE – full online access, any time, from anywhere

These years marked a digital transformation, from desktop-based multiple data entry to real-time on-farm data capture.

From 2015-2019, we focused on building out the app and improving it based on direct farmer feedback. It was about listening, learning, and lifting the experience.

Today, around 90% of New Zealand's dairy farmers rely on MINDA, which is one of the largest software platforms in New Zealand agritech.

- · Over a million animal events are recorded by farmers
- LIC adds millions more through herd testing, AB, diagnostics, and health events
- Data also flows from wearables, sensors, third-party integrations
- MINDA supports traceability, compliance, animal health, and crucial decision-making

Looking ahead to the future Blair Smith LIC's Head of Farm Software is clear with his vision:

"Our focus is helping farmers do more with their data, more insights, more control, more impact. We're working on, rebuilding the MINDA app for easier, faster recording, developing a new dashboard showing smarter, more tailored insights, and ongoing integration partnerships with wearables, and farm technology."

MINDA has come a long way over the last four decades, but its core purpose has remained the same - help farmers manage their herds better, every day.

Here's to 40 years of MINDA, and to you, the farmers who've help shape what it is today.

Farming smarter with MINDA® integrations

Nestled in the heart of Duntroon, Jason and Raewyn Sanford's farming operation Our Dairy Farm Ltd, is a prime example of how on-farm technology and integration can transform a dairy operation.

ver the past decade, the Sanford's have taken a rundown block and turned it into a thriving, tech-savvy farm milking around 450 cross-bred cows across 124 hectares.

Jason and Raewyn purchased the original block in 2014 and completed the conversion by the 2016 season. "It was a rundown block with flat irrigation," Jason recalls. "We were farming just down the road, and when that finished, we bought this block and converted it."

Eight years on, the farm is a well-oiled machine.

Operating as a System 3, they feed in the shed all season and have recently transitioned from palm kernel to barley blends. "We're always looking to improve," says Jason. "This year we've changed up the feed and brought in new tech to help us manage things better."

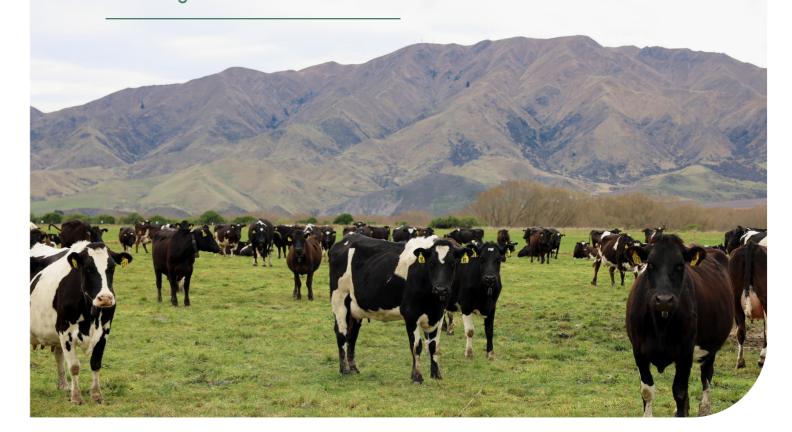
From the beginning, the Sanford's designed their shed to be efficient. "We put in Protrack drafting the first year here so it could be a one-man shed," Jason explains. "Since then, we have welcomed more tech to aid our operations, save us time, labour and allow us to keep expanding our business."

In the wearables department, they've had collars for about four years, and this year have decided to move to Halter. "Halter is helping us manage the herd, including grazing remotely because we've recently moved to our new run-off block."

Jason explained that while they're yet to reap the rewards of Halter's heat detection and automatic drafting since integrating with MINDA and Protrack, he is very excited about the ease it will offer over the mating period.

"If you ask me, the on-farm tech has reignited our love for farming. Not to mention it has made those busy periods on farm far more manageable. Jason is happier and less stressed, resulting in the kids and I being happier", Raewyn Sanford.

Raewyn and Jason Sanford


The Sanford's have embraced MINDA becoming the central hub for their farm data. "It's all about integration," says Jason. "We've got Halter, Gallagher weighing, Protrack, and Fonterra Dairy Diary all being feed data from MINDA. It means we're not duplicating data, and everything's in one place."

One of their standout examples was their use of Gallagher weighing. "We installed a new cattle crush at the runoff last year and started weighing calves and yearlings properly," Jason says. "Before, we never really weighed them. Now, I can see weights in MINDA and draft out lighter animals to get them up to speed before their first lactating season."

This data-driven approach is already paying off. "Last year, we had about 20 animals that were too light. Now, we're feeding them better and hitting target weights before mating. It means they enter the herd ready to perform."

This current season their herd has hit their peak production two whole months sooner than the last season, "I believe that's because our crop of heifers this year came into the herd at the right weights and have been able to hit the ground running" says Jason.

"Another huge win from integrating with MINDA is the time saved during compliance and inspections. "With Fonterra Dairy Diary integrated, our shed inspection is so much easier. The inspector doesn't need to see half the paperwork; he's already got it all as it's in MINDA. No duplication, no scrambling to find records." Jason Sanford

 ${\bf L}$ to ${\bf R}$ Raewyn Sanford, Malc Douglas (LIC Agri Manager) and Jason Sanford

MINDA°

With Halter now in place, the Sanford's are excited about future possibilities, but they say it's already been life changing in the last five months. "Jason had surgery on his knee during the middle of calving this year," says Raewyn. "That would've never been a possibility in the past, especially not over one of the busiest periods on farm."

Jason and Raewyn have four children, the eldest Grace, 21, is studying early childhood education while working part-time; their second, Hayden, is finishing a diploma in Farm Management at Lincoln University and shows the most interest in one day returning to the farm.

"He's the one who enjoys farm life," says Jason. "He thinks the tech is great too. He's seen firsthand how it makes farming more efficient."

Their two youngest, Flynn (17) and Tahlia (15), are both still in school. While there's no pressure on any of the kids to follow in their parents' footsteps, both Jason and Raewyn are proud to be running a business that their children see as modern and forward-thinking.

By having the farm tech to support their operation, Jason and Raewyn have enabled themselves to push their herd performance to the next level.

LIC Agri Manager Malc Douglas says the Sanford's six-week-in-calf rate last season was "fantastic" a reflection of both their strong management, attention to 'the basics' and their willingness to adopt and use technology to ensure the animals are in peak

condition to perform to benchmark mating standards - aiding the success of a consolidated, future-focused mating plan.

"They have really embraced a more strategic approach to mating.

They've set themselves up well for continued herd improvement, and it's really showing in their past results. This season, advising a few straws of sexed semen a day to advance genetic gain from their top cows, and using nominated beef sires for their bottom animals was a very easy conversation to have. They just get it." Malc Douglas

The technology has been a critical enabler during the mating season. "We simply wouldn't have been able to go 100% AB sires without the technology in place," Jason says. "It's allowed us to be far more efficient at what is typically one of the most intense and critical times of year."

By adopting 100% artificial insemination across the herd, the Sanford's create more high-quality heifer calves each year, ensuring they're constantly maximising annual genetic gain, therefore lifting the standard of the animals they're milking.

In addition, introducing three weeks of sexed semen this year will create a surplus number of replacements, creating selection pressure for their final choice of replacements and providing some very high BW, high value saleable heifers for added bonus cashflow.

"It means the cows we milk in the years to come are going to be even more efficient and more profitable. And as we look to grow our herd size in future, we know we're doing it with better genetics behind us." Jason Sanford

That genetic gain is already translating into performance in the vat. Last season, the Sanford herd averaged approximately 500kgMS per cow, and this year they're already tracking ahead to hit 550kgMS.

The Sanford's use of technology has not only streamlined daily operations and compliance but also enabled them to expand their business and make strategic decisions which have led to tangible gains in productivity, animal health, and genetic improvement. As Jason and Raewyn continue to innovate, their farm is an excellent example of how tech-forward thinking and integrated systems like MINDA can reignite the passion and redefine what's possible.

Raewyn Sanford

Farm facts

Farm owners:

Jason and Raewyn Sanford

Name of farm:

Our Dairy Ltd

Herd size:

450 Peak

Location:

Duntroon, Waitaki

On-Farm tech

- · Protrack 3-way draft
- Fonterra Dairy Farm Records integrated with MINDA
- · Halter
- · Gallagher weighing

New era in dairy-beef genetics: Introducing KiwiPrime®

We are proud to introduce KiwiPrime, a new beef genetics product designed specifically for New Zealand dairy farmers and the wider beef value chain.

By Paul Charteris,Product Manager – Dairy Beef and SGL

eveloped carefully over the last eight years, KiwiPrime is a purpose-built solution that blends calving ease, short gestation, and improved growth - offering a new standard in dairy-beef performance.

We sat down with Paul Charteris, LIC's Dairy Beef and SGL Product Manager, to learn more about the thinking behind KiwiPrime and what makes it a standout offering.

"KiwiPrime was developed to supersede our traditional short gestation beef products," It retains the short gestation length and calving ease that dairy farmers value but adds more growth potential, making it appealing to beef finishers." - Paul Charteris

By incorporating top Angus genetics, selected for their known growth rates and carcass attributes, while maintaining the distinctive white face and short gestation from the Hereford genetics, KiwiPrime has been designed to meet the needs of everyone.

"It's been developed with the entire beef value chain in mind," Paul explains. "We've spoken with calf rearers who've trialled these animals, and they've been very happy with the results."

LIC has conducted six years of benchmark trials, comparing

KiwiPrime bulls against Angus, Hereford, and other beef breeds. "They consistently impress in terms of growth and carcass quality," says Paul.

KiwiPrime delivers a unique combination of traits:

- Short gestation length for tighter calving intervals
- Low birth weight for calving ease
- Improved growth rates for better finishing outcomes
- Distinctive black coat and white face for easy identification and market appeal
- Homozygous polled genetics
- Predictable carcass quality

"Over the years, our scientists have identified the gene causing splotchy faced calves and we have bred

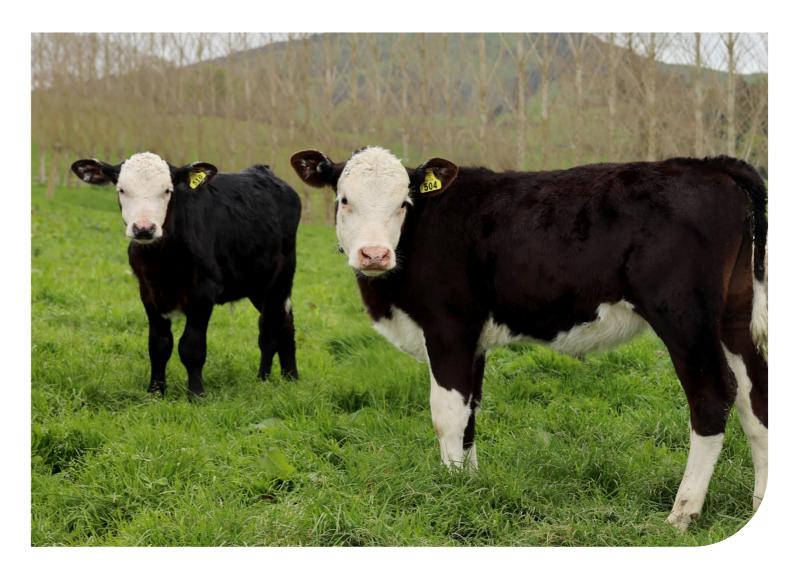
this out of the population, ensuring most calves have clean white faces which is an important visual cue for farmers and buyers," says Paul. This visual consistency helps ensure calves fetch good prices at sale yards, avoiding the risk of being undervalued or processed prematurely.

KiwiPrime is especially suited to those smaller dairy breeds such as Jersey and crossbred cows, and those that traditionally produce non-replacement calves. "Farmers have often had to choose between calving ease and calf value," Paul says. "KiwiPrime helps shift that mindset, offering a solution to both."

In the beef world, this is known as "bending the growth curve", keeping birth weights low for calving ease

while improving growth rates. "It's a difficult balance, but KiwiPrime is designed to hit that sweet spot,".

From 2027, KiwiPrime will be available as a liquid straw, making it easy to incorporate into mating plans.


KiwiPrime is LIC's first new genetic brand in many years, marking a renewed commitment to dairybeef. "It's been a serious nine-year investment,"Paul says. "We've backed it with data, trials, and farmer feedback."

While carcass data is still being collected, Paul is optimistic. "We've bred KiwiPrime animals to finish before their second winter, saving farmers on feed costs and improving efficiency."

As wearable technology and automated drafting systems become more common, the use of beef straws in dairy herds is increasing. KiwiPrime is positioned to be a key solution for this evolving landscape.

KiwiPrime will be available as a frozen product from February 2026 in limited supply, with liquid straws to follow. It's a homegrown solution, built for New Zealand dairy-beef systems and designed to add value across the dairy-beef spectrum.

"It's a new era," Paul says. "KiwiPrime is specifically built for New Zealand dairy farmers, with the beef rearer in mind."

Methane Barn Opening

On 17th October we opened our new Methane Barn at our Innovation Farm in Ōhaupō. This marks a major step in our efforts to breed climate friendly cows and support the reduction of New Zealand's agricultural emissions.

Kaumatua from Ngaati Maahanga, welcome LIC guests to the farm

LIC Innovation Farm - Ōhaupō Waikata

Hon.Todd McClay - Minister of Agriculture, David Chin - LIC CE

C Methane Barn - Ōhaupō Waikato

L to R David Chin - LIC CE, Hon. Todd McClay - Minister of Agriculture, Corrigan Sowman - LIC Board Chair

